93.6k views
0 votes
HELP!!! GIVING OUT 50 POINTS

QUESTION ON BINOMIAL THEOREMS

HELP!!! GIVING OUT 50 POINTS QUESTION ON BINOMIAL THEOREMS-example-1

1 Answer

4 votes

Answer:


(1-x)^{(1)/(2)} =1-(1)/(2)x-(1)/(8)x^2-(1)/(16)x^3


\left((100)/(98)\right)^{(1)/(2)}=1.010\;\sf(3\;d.p.)

Explanation:

To expand
(1-x)^{(1)/(2) in ascending powers of x up to the fourth term, we can use the binomial series expansion.

The binomial series expansion for (1 + x)ⁿ is given by:


\boxed{\begin{array}{l}\underline{\sf Binomial\;series}\\\\(1+x)^n=1+nx+(n(n-1))/(1 * 2)x^2+...+(n(n-1)...(n-r+1))/(1 * 2 * ... * r)x^r+...\\\\(|x| < 1, n \in \mathbb{R})\end{array}}

In this case, we have:


  • n=(1)/(2)

  • x = -x

Substitute the values into the expansion (to the fourth term) and simplify:


\begin{aligned}(1-x)^{(1)/(2)} &amp;= 1+\left((1)/(2)\right)(-x)+((1)/(2)\left((1)/(2)-1\right))/(2*1)(-x)^2+((1)/(2)\left((1)/(2)-1\right)\left((1)/(2)-2\right))/(3*2*1)(-x)^3\\\\&amp;= 1-(1)/(2)x+(-(1)/(4))/(2)(x^2)+((3)/(8))/(6)(-x^3)\\\\&amp;= 1-(1)/(2)x-(1)/(8)x^2-(1)/(16)}x^3\\\\\end{aligned}


\textsf{To evaluate $\left((100)/(98)\right)^{(1)/(2)}$, compare $\left((100)/(98)\right)^{(1)/(2)}$ with $(1-x)^{(1)/(2)}$:}


\begin{aligned}\left((100)/(98)\right)^{(1)/(2)}&amp;=(1-x)^{(1)/(2)}\\\\(100)/(98)&amp;=1-x\\\\(98+2)/(98)&amp;=1-x\\\\(98)/(98)+(2)/(98)&amp;=1-x\\\\1+(1)/(49)&amp;=1-x\\\\(1)/(49)&amp;=-x\\\\x&amp;=-(1)/(49)\end{aligned}


\textsf{Substitute $x = -(1)/(49)$ into the expansion of $(1-x)^{(1)/(2)}$ to evaluate $\left((100)/(98)\right)^{(1)/(2)}$:}


\begin{aligned}\left((100)/(98)\right)^{(1)/(2)}&amp;= 1-(1)/(2)\left(-(1)/(49)\right)-(1)/(8)\left(-(1)/(49)\right)^2-(1)/(16)\left(-(1)/(49)\right)^3\\\\&amp;= 1+(1)/(98)-(1)/(8)\left((1)/(2401)\right)-(1)/(16)\left(-(1)/(117649)\right)\\\\&amp;= 1+(1)/(98)-(1)/(19208)+(1)/(1882384)\\\\&amp;=1.01015255...\\\\&amp;=1.010\; \sf (3\;d.p.)\end{aligned}


\textsf{Therefore, the evaluation of $\left((100)/(98)\right)^{(1)/(2)}$ to three decimal places is:}


\large\boxed{\boxed{1.010\;\sf(3\;d.p.)}}

User Regent
by
8.5k points

No related questions found