Answer:
To solve the equation 3⋅f(−4)−3⋅g (−2)= 3, you need to follow these steps:
1. Start off by simplifying the equation. Plug in the given values for f(−4) and g(−2) into the equation:
3⋅f(−4)−3⋅g (−2)= 3
3⋅f(−4)−3⋅g (−2)= 3
3⋅f(−4)−3⋅(−2)= 3
2. Simplify further:
3⋅f(−4)−3⋅(−2)= 3
3⋅f(−4)+6= 3
3. Now, you have to isolate the variable, f(−4). To do this, you have to move the constant term (6) to the other side of the equation by subtracting it from both sides:
3⋅f(−4)+6−6= 3−6
3⋅f(−4)=−3
4. Finally, you have to can solve for f(−4) by dividing both sides of the equation by 3:
(3⋅f(−4))/3=−3/3
f(−4)=−1
Therefore, the value of f(−4) that come to a sum of, 3⋅f(−4)−3⋅g (−2)= 3 is f(−4) = −1.