Answer:
(a) To find (f + g)(x), we simply add the functions f(x) and g(x):
(f + g)(x) = (x + 6) + (x - 6)
Expanding the expression, we get:
(f + g)(x) = x + 6 + x - 6
Combining like terms, we have:
(f + g)(x) = 2x
So, (f + g)(x) = 2x.
(b) To find (f - g)(x), we subtract the function g(x) from f(x):
(f - g)(x) = (x + 6) - (x - 6)
Expanding the expression, we get:
(f - g)(x) = x + 6 - x + 6
Combining like terms, we have:
(f - g)(x) = 12
So, (f - g)(x) = 12.
(c) To find (fg)(x), we multiply the functions f(x) and g(x):
(fg)(x) = (x + 6)(x - 6)
Expanding the expression using the distributive property, we get:
(fg)(x) = x^2 - 6x + 6x - 36
Simplifying further, we combine like terms:
(fg)(x) = x^2 - 36
So, (fg)(x) = x^2 - 36.
(d) To find (f/g)(x), we divide the function f(x) by g(x):
(f/g)(x) = (x + 6) / (x - 6)
This is the simplified form of (f/g)(x).