Answer:
n + 4
Explanation:
Given
⅕(m + m + 1 + m + 2 + m + 3 + m + 4) = n
Required
⅑(m + 2 + m + 3 +.......+ m + 10)
We have:
⅕(m + m + 1 + m + 2 + m + 3 + m + 4) = n
Multiply both sides by 5
m + m + 1 + m + 2 + m + 3 + m + 4 = 5n
Collect like terms
m + m + m + m + m = 5n - 1 - 2 - 3 - 4
5m = 5n - 10
Divide both sides by 5
m = n - 2
So, we have:
⅑(m + 2 + m + 3 + m + 4 + m + 5 + m + 6 + m + 7 + m + 8 + m + 9 + m + 10)
Collect like terms
= ⅑(m+m+m+m+m+m+m+m+m+2+3+4+5+6+7+8+9+10)
= ⅑(9m + 54)
= m + 6
Substitute n - 2 for m
= n - 2 + 6
= n + 4