224k views
2 votes
TanA + cotA = 2cosec2A

1 Answer

3 votes

Explanation:

Let's simplify the Right Handed Side


2 \csc(2 \alpha )


\tan( \alpha ) + \cot( \alpha ) = (2)/( \sin(2 \alpha ) )


\tan( \alpha ) + \cot( \alpha ) = (2)/(2\sin( \alpha ) \cos( \alpha ) )


\tan( \alpha ) + \cot( \alpha ) = (1)/( \sin( \alpha ) \cos( \alpha ) )

Now, lets consider the left handed side.


( \sin( \alpha ) )/( \cos( \alpha ) ) + ( \cos( \alpha ) )/( \sin( \alpha ) ) = (1)/( \sin( \alpha ) \cos( \alpha ) )


\frac{ \sin {}^(2) ( \alpha ) + \cos {}^(2) ( \alpha ) }{ \sin( \alpha ) \cos( \alpha ) } = (1)/( \sin( \alpha ) \cos( \alpha ) )


(1)/( \sin( \alpha ) \cos( \alpha ) ) = (1)/( \sin( \alpha ) \cos( \alpha ) )

User IDanil
by
7.7k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories