159k views
2 votes
Find the derivative of the function
y = cot^2(sin θ)

1 Answer

2 votes

Answer:


(dy)/(d\theta)=-2\csc^2(\sin\theta)\cot(\sin\theta)(\cos\theta)

Explanation:


\displaystyle y=\cot^2(\sin\theta)\\\\y=(\cot(\sin\theta))^2\\\\(dy)/(d\theta)=(\cot(\sin\theta))'\cdot2\cot(\sin\theta)\\\\(dy)/(d\theta)=-\cos\theta\csc^2(\sin\theta)\cdot2\cot(\sin\theta)\\\\(dy)/(d\theta)=-2\csc^2(\sin\theta)\cot(\sin\theta)(\cos\theta)

The problem takes some rearranging, but mostly simple with use of chain rule and the fact that
(d)/(dx)\cot(x)=-\csc^2(x).

User ArthurChamz
by
8.3k points

No related questions found