Answer:
The slope of the Capital Market Line is 5.
Step-by-step explanation:
The Capital Market Line (CML) represents the relationship between expected return and beta for a well-diversified portfolio. According to the Capital Asset Pricing Model (CAPM), the equation for the CML is:
Expected Return = Risk-Free Rate + (Market Risk Premium × Beta)
To determine the slope of the CML, we need the risk-free rate and the market risk premium. Let's assume the risk-free rate is 2% and the market risk premium is 5%.
For Stock A with a beta of 0.9, the expected return can be calculated as follows:
Expected Return A = 2% + (5% × 0.9) = 6.5%
For Stock B with a beta of 1.2, the expected return can be calculated as follows:
Expected Return B = 2% + (5% × 1.2) = 8%
Now, with these data points, we can plot Stock A and Stock B on the expected return (y-axis) versus beta (x-axis) graph. The slope of the CML is the line connecting these two data points:
Slope of CML = (Expected Return B - Expected Return A) / (Beta B - Beta A)
Slope of CML = (8% - 6.5%) / (1.2 - 0.9)
Slope of CML = 1.5% / 0.3
Slope of CML = 5
Therefore, the slope of the Capital Market Line is 5.