74,259 views
19 votes
19 votes
Prove that tan theta * sin theta = (1 - cos^2 theta)/(sqrt(1 - sin^2 theta))​

User Nicolas Rinaudo
by
2.6k points

1 Answer

23 votes
23 votes

Answer:

This identity holds as long as
\displaystyle \theta \\e k\, \pi + (\pi)/(2) for all integer
k.

For the proof, make use of the fact that:


\displaystyle \tan(\theta) = (\sin(\theta))/(\cos(\theta)) (definition of tangents,) and


\cos(\theta) = \sqrt{1 - \sin^(2)(\theta)} (Pythagorean identity,) which is equivalent to
1 - \cos^(2)(\theta) = \sin^(2)(\theta).

Explanation:

Assume that
\displaystyle \theta \\e k\, \pi + (\pi)/(2) for all integer
k. This requirement ensures that the
\tan(\theta) on the left-hand side takes a finite value. Doing so also ensures that the denominator
√(1 - \sin^2(\theta)) on the right-hand side is non-zero.

Make use of the fact that
\displaystyle \tan(\theta) = (\sin(\theta))/(\cos(\theta)) to rewrite the left-hand side:


\begin{aligned} & \tan(\theta) \cdot \sin(\theta) \\ =&\; \frac{\sin({\theta})}{\cos({\theta})} \cdot \sin(\theta) \\ =&\; (\sin^(2)(\theta))/(\cos(\theta))\end{aligned}.

Apply the Pythagorean identity
\sin^(2)(\theta) = 1 - \cos^(2)(\theta) and
\cos(\theta) = \sqrt{1 - \sin^(2)(\theta)} to rewrite this fraction:


\begin{aligned} & (\sin^(2)(\theta))/(\cos(\theta))\\ =\; &(1 - \cos^(2)(\theta))/(\cos(\theta))\\ =\; & \frac{1 - \cos^(2)(\theta)}{\sqrt{1 - \sin^(2)(\theta)}}\end{aligned}.

Hence,
\displaystyle \tan(\theta) \cdot \sin(\theta) = \frac{1 - \cos^(2)(\theta)}{\sqrt{1 - \sin^(2)(\theta)}}.

User Jadli
by
3.0k points