Answer:
Explanation:
You want values of ∆y and dy for y = x² -6x and x = 5, ∆x = dx = 0.5.
Dy
The value of dy is found by differentiating the function.
y = x² -6x
dy = (2x -6)dx
For x=5, dx=0.5, this is ...
dy = (2·5 -6)(0.5) = (4)(0.5)
dy = 2
∆y
The value of ∆y is the function difference ...
∆y = f(x +∆x) -f(x) . . . . . . . where y = f(x) = x² -6x
∆y = (5.5² -6(5.5)) -(5² -6·5)
∆y = (30.25 -33) -(25 -30) = -2.75 +5
∆y = 2.25
__
Additional comment
On the attached graph, ∆y is the difference between function values:
∆y = -2.75 -(-5) = 2.25
and dy is the difference between the linearized function value and the function value:
dy = -3 -(-5) = 2.00
<95141404393>