170k views
2 votes
Find the general solution of the differential equation

y" - 36y = -108t + 72t^2.
NOTE: Use t as the independent variable. Use c_1 and c_2 as arbitrary constants. y(t): =________________

User Samiya
by
8.0k points

1 Answer

5 votes

Answer:

y(t) = c_1e^(6t) + c_2e^(-6t) - 2t^2 + 3t,

Explanation:

To find the general solution of the given differential equation, we can first solve the associated homogeneous equation, and then find a particular solution for the non-homogeneous equation. Let's proceed with the steps:

Step 1: Solve the associated homogeneous equation:

The associated homogeneous equation is obtained by setting the right-hand side of the differential equation to zero:

y" - 36y = 0

The characteristic equation for this homogeneous equation is:

r^2 - 36 = 0

Solving the characteristic equation, we get the roots:

r = ±6

Therefore, the homogeneous solution is given by:

y_h(t) = c_1e^(6t) + c_2e^(-6t)

Step 2: Find a particular solution for the non-homogeneous equation:

We can use the method of undetermined coefficients to find a particular solution for the non-homogeneous equation. Since the right-hand side of the equation is a polynomial, we assume a particular solution of the form:

y_p(t) = At^2 + Bt + C

Now we can substitute this particular solution into the original differential equation and solve for the coefficients A, B, and C.

y_p"(t) - 36y_p(t) = -108t + 72t^2

Differentiating y_p(t) twice:

y_p'(t) = 2At + B

y_p"(t) = 2A

Substituting into the differential equation:

2A - 36(At^2 + Bt + C) = -108t + 72t^2

Simplifying and equating coefficients:

-36A = 72 (coefficient of t^2)

-36B = -108t (coefficient of t)

-36C = 0 (coefficient of the constant term)

Solving these equations, we find:

A = -2

B = 3

C = 0

So the particular solution is:

y_p(t) = -2t^2 + 3t

Step 3: Write the general solution:

The general solution of the non-homogeneous equation is the sum of the homogeneous and particular solutions:

y(t) = y_h(t) + y_p(t)

= c_1e^(6t) + c_2e^(-6t) - 2t^2 + 3t

Therefore, the general solution of the given differential equation is:

y(t) = c_1e^(6t) + c_2e^(-6t) - 2t^2 + 3t,

where c_1 and c_2 are arbitrary constants.

User Svintus
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories