Answer:
Explanation:
To evaluate the expression {p - q, p - q}, which represents the inner product of the polynomial (p - q) with itself, you can follow these steps:
Given p(x) = 5x^2 - x - 3 and q(x) = 2x^2 + 4x - 3.
Subtract q(x) from p(x) to get (p - q):
(p - q)(x) = (5x^2 - x - 3) - (2x^2 + 4x - 3)
= 5x^2 - x - 3 - 2x^2 - 4x + 3
= (5x^2 - 2x^2) + (-x - 4x) + (-3 + 3)
= 3x^2 - 5x
Now, calculate the inner product of (p - q) with itself using the given inner product formula:
{p - q, p - q} = 5(a1)(a2) + 4(b1)(b2) + 3(c1)(c2)
= 5(3)(3) + 4(-5)(-5) + 3(0)(0)
= 45 + 100 + 0
= 145
Therefore, the value of {p - q, p - q} is 145.