Answer: D: The cost of one hand towel is $8 and the cost of one bath towel is $5.
Explanation:
Let's assume the cost of one hand towel is 'x' dollars and the cost of one bath towel is 'y' dollars.
For the first hotel, Mr. Miller ordered 27 hand towels and 48 bath towels, resulting in a bill of $540. This can be expressed as the equation:
27x + 48y = 540 ...(equation 1)
For the second hotel, Mr. Miller ordered 50 hand towels and 24 bath towels, resulting in a bill of $416. This can be expressed as the equation:
50x + 24y = 416 ...(equation 2)
To solve this system of equations, we can use any suitable method such as substitution or elimination. Let's use the elimination method:
Multiplying equation 1 by 2 and equation 2 by 3, we get:
54x + 96y = 1080 ...(equation 3)
150x + 72y = 1248 ...(equation 4)
Now, subtracting equation 4 from equation 3, we have:
(54x + 96y) - (150x + 72y) = 1080 - 1248
-96x + 24y = -168
Dividing both sides of the equation by -24, we get:
4x - y = 7 ...(equation 5)
Now, we have a system of equations:
4x - y = 7 ...(equation 5)
50x + 24y = 416 ...(equation 2)
Solving this system of equations, we find that x = 8 and y = 5.
Therefore, the cost of one hand towel is $8 and the cost of one bath towel is $5.
So, the correct answer is option D: The cost of one hand towel is $8 and the cost of one bath towel is $5.