212k views
5 votes
Find the variance for the given data. Round your answer to one more decimal place than the original data. -12 6 -3 6

User Amloelxer
by
8.9k points

2 Answers

3 votes
To find the variance for the given data, we can use the following formula:

Variance = (sum of squared deviations from the mean) / (number of data points)

First, we need to find the mean of the data:

mean = (-12 + 6 - 3 + 6) / 4 = -0.75

Next, we need to find the deviation of each data point from the mean:

deviations: (-12 - (-0.75)) = -11.25, (6 - (-0.75)) = 6.75, (-3 - (-0.75)) = -2.25, (6 - (-0.75)) = 6.75

Then, we square each deviation:

squared deviations: (-11.25)^2 = 126.5625, (6.75)^2 = 45.5625, (-2.25)^2 = 5.0625, (6.75)^2 = 45.5625

We add up these squared deviations:

sum of squared deviations = 222.75

Finally, we divide by the number of data points to get the variance:

variance = 222.75 / 4 = 55.6875

Rounding to one more decimal place than the original data, we get:

variance = 55.7
User Mantoni
by
8.3k points
3 votes

Answer:

5 is the answer due to the ecomiisnsko

User ZiggyTheHamster
by
8.4k points

No related questions found