159k views
1 vote
What is (-2√3-2i)^4 equivalent to?
(-2√3-2i)^4 =___ cis ___ or ____


What is (-2√3-2i)^4 equivalent to? (-2√3-2i)^4 =___ cis ___ or ____ ​-example-1

1 Answer

4 votes

Answer:


\left(-2√(3)-2i\right)^4=\boxed{256\:\text{cis}\left((2\pi)/(3)\right)\right)}\;\;\textsf{or}\;\;\boxed{-128 + 128 √(3)\: i}

Explanation:

Rectangular form

Rectangular form, also known as the Cartesian form, is a way to represent a complex number using its real and imaginary parts.

A complex number is represented in the form z = a + bi, where a is the real part and b is the imaginary part.

To express (-2√3 - 2i)⁴ in rectangular form, expand using the binomial theorem.


\boxed{\begin{minipage}{11cm}\underline{Binomial Theorem}\\\\$\displaystyle (a+b)^n=a^n+\binom{n}{1}a^(n-1)b^1+\binom{n}{2}a^(n-2)b^2+...+\binom{n}{r}a^(n-r)b^r+...+b^n$\\\\\\where $\displaystyle \binom{n}{r} \: = \:^(n)\text{C}_(r) = (n!)/(r!(n-r)!)$\\\end{minipage}}


\textsf{If\;\;$(-2√(3)-2i)^4=(a+b)^n$,\;\;then:}


  • a = -2√(3)

  • b = -2i

  • n = 4

Substituting these values into the binomial theorem formula:


\displaystyle =(-2√(3))^4+\binom{4}{1}(-2√(3))^(3)(-2i)+\binom{4}{2}(-2√(3))^(2)(-2i)^2+\binom{4}{3}(-2√(3))(-2i)^3+(-2i)^4


=144+4(-24√(3))(-2i)+6(12)(-4)+4(-2√(3))(8i)+16


=144+192√(3)\:i-288-64√(3)\:i+16


=-128+128√(3)\:i

Therefore, (-2√3 - 2i)⁴ in rectangular form is:


\boxed{-128 + 128√(3)\:i}


\hrulefill

Polar form

Polar form is a way to represent a complex number using its magnitude (modulus) and argument (angle).

It is expressed in the form r(cos(θ) + i sin(θ)) where r represents the distance from the origin (magnitude) and θ represents the angle with the positive real axis (argument).


\textsf{The polar form of a complex number\;\;$z=a+bi$\;\;is\;\;$z=r(\cos \theta+i \sin \theta)$}.


\textsfThe magnitude of the complex number\;\;$z=a+bi$\;\;is written as $r=


\textsf{Using the rectangular form found in the previous part,\;\;$z=-128+128√(3)\:i$.}\\\\\textsf{Therefore:}


\begin{aligned}r=|z|&=\sqrt{(-128)^2+(128√(3))^2}\\&=√((16384+49152)\\&=√(65536)\\&=256\end{aligned}


\textsf{For a complex number\;\;$z=a+bi$,\;\;the argument, $\theta$, satisfies\;\;$\tan \theta=(b)/(a)$.}


\textsf{$\theta=\tan^(-1)\left((b)/(a)\right)$\;\;for\;\;$a > 0$\;\;and\;\;$\theta=\tan^(-1)\left((b)/(a)\right)+ \pi$\;\;for\;\;$a < 0$}\:.


\textsf{Since\;\;$a = -128 < 0$,\;\;use the formula $\theta = \tan^(-1)\left((b)/(a)\right)+ \pi$\::}


\theta=\tan ^(-1)\left((128√(3))/(-128)\right)+\pi


\theta=\tan^(-1)(-√(3))+\pi


\theta=-(\pi)/(3)+\pi


\theta=(2\pi)/(3)

Therefore, the polar form of (-128 + 128√3i) is:


\boxed{256\left (\cos \left((2\pi)/(3)\right)+i \sin\left((2\pi)/(3)\right)\right)}=\boxed{256\:\text{cis}\left((2\pi)/(3)\right)\right)}

User Orges
by
7.8k points