10.8k views
0 votes
The equation T^2=A^3 shows the relationship between a planets orbital period, T, and the planets mean distance from the sun, A in astronomical units, AU. If planet y is twice the mean distance from the sun as planet x. by what fsctor is the orbital period increased?

User James Hiew
by
8.0k points

1 Answer

0 votes

Answer:

2 * A^(3/2).

Explanation:

Given that planet y is twice the mean distance from the sun as planet x, we can denote the mean distance of planet x as "A" and the mean distance of planet y as "2A".

The equation T^2 = A^3 represents the relationship between the orbital period (T) and the mean distance from the sun (A) for a planet.

Let's compare the orbital periods of planet x and planet y using the equation:

For planet x:

T_x^2 = A^3

For planet y:

T_y^2 = (2A)^3 = 8A^3

To find the factor by which the orbital period is increased from planet x to planet y, we can take the square root of both sides of the equation for planet y:

T_y = √(8A^3)

Simplifying the square root:

T_y = √(2^3 * A^3)

= √(2^3) * √(A^3)

= 2 * A^(3/2)

Now, we can express the ratio of the orbital periods as:

T_y / T_x = (2 * A^(3/2)) / T_x

As we can see, the orbital period of planet y is increased by a factor of 2 * A^(3/2) compared to the orbital period of planet x.

Therefore, the factor by which the orbital period is increased from planet x to planet y depends on the value of A (the mean distance from the sun of planet x), specifically, it is 2 * A^(3/2).

User Itthrill
by
8.5k points