just to clarify some part of the notation
this is simply saying that whatever "nth" term you wish to get, is -3/4 times whatever is before it, so another wording for that will be, the next term is the current term times -3/4, so in short -3/4 is the common ratio.
![\qquad \qquad \textit{sum of a finite geometric sequence} \\\\ \displaystyle S_n=\sum\limits_(i=1)^(n)\ a_1\cdot r^(i-1)\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=\textit{last term's}\\ \qquad position\\ a_1=\textit{first term}\\ r=\textit{common ratio}\\[-0.5em] \hrulefill\\ a_1=64\\ n=4\\ r=-(3)/(4) \end{cases}](https://img.qammunity.org/2024/formulas/mathematics/high-school/ktvvtika8ohekfd5d6vqlohfljmodv8yrk.png)
