85.4k views
3 votes
Tan^-1(√1-sinx÷√1+sinx)

User Novawaly
by
7.9k points

1 Answer

6 votes

Answer:

tan^(-1)(|cos(x)| / (1 + sin(x)))

Explanation:

√(1 - sin(x)) / √(1 + sin(x))

(√(1 - sin(x)) / √(1 + sin(x))) * (√(1 + sin(x)) / √(1 + sin(x)))

√((1 - sin(x))(1 + sin(x))) / (1 + sin(x))

√(1 - sin^2(x)) / (1 + sin(x))

Then, using the trigonometric identity sin^2(x) + cos^2(x) = 1, we can substitute cos^2(x) for 1 - sin^2(x):

√(cos^2(x)) / (1 + sin(x))

|cos(x)| / (1 + sin(x))

tan^(-1)(|cos(x)| / (1 + sin(x)))

*Note : the absolute value |cos(x)| is used to ensure the argument of the inverse tangent is always positive.

User Roadies
by
7.1k points

Related questions

1 answer
3 votes
80.9k views
asked Apr 18, 2023 126k views
Eric LaForce asked Apr 18, 2023
by Eric LaForce
8.3k points
1 answer
1 vote
126k views
1 answer
4 votes
17.8k views