Answer:
tan^(-1)(|cos(x)| / (1 + sin(x)))
Explanation:
√(1 - sin(x)) / √(1 + sin(x))
(√(1 - sin(x)) / √(1 + sin(x))) * (√(1 + sin(x)) / √(1 + sin(x)))
√((1 - sin(x))(1 + sin(x))) / (1 + sin(x))
√(1 - sin^2(x)) / (1 + sin(x))
Then, using the trigonometric identity sin^2(x) + cos^2(x) = 1, we can substitute cos^2(x) for 1 - sin^2(x):
√(cos^2(x)) / (1 + sin(x))
|cos(x)| / (1 + sin(x))
tan^(-1)(|cos(x)| / (1 + sin(x)))
*Note : the absolute value |cos(x)| is used to ensure the argument of the inverse tangent is always positive.