166k views
0 votes
A rectangle has a length that is equal to 4 less than

twice the width. The function for the perimeter
depending on the width can be expressed with the
function f(w) = 6w-8, where w is the width of the
rectangle in centimeters.

1 Answer

6 votes

Answer: According to the provided facts, f(w), indicates the rectangle's perimeter in centimetres: 6w - 8

Explanation:

According to the facts given, the rectangle's length is equal to 4 less than twice its breadth. Let's deconstruct it:

Size is calculated as follows: Length = 2 * Width - 4.

The sum of all the sides in a rectangle is used to determine its perimeter. In this instance, we have two sides that are the width's length and two sides that are the length's length (2 * Width - 4). As a result, the perimeter (P) is determined by:

P = (Width) + (Width) + (Width - 4)

Condensing the phrase:

P = 2 * Width plus 4 * Width minus 8.

P = Width - 8 * 6

It is possible to write the perimeter (P) function as a function of width (w) as follows:

f(w) = 6w - 8

As a result, the provided function, f(w), indicates the rectangle's perimeter in centimetres: 6w - 8

User Fartab
by
8.5k points