216k views
1 vote
Add the fractions q/q^2+5q+6 and 1/q^2+3q+2

User Abahgat
by
8.2k points

1 Answer

3 votes

Answer:


\cfrac{q^2+2q+3}{(q+1)(q+2)(q+3)}

---------------------

First, factorize the denominators.

1)

  • q² + 5q + 6 =
  • q² + 2q + 3q + 6 =
  • q(q + 2) + 3(q + 2) =
  • (q + 2)(q + 3)

2)

  • q² + 3q + 2 =
  • q² + q + 2q + 2 =
  • q(q + 1) + 2(q + 1) =
  • (q + 1)(q + 2)

The common factor of both denominators is q + 2, so the common denominator is:

  • (1 + 1)(q + 2)(q + 3)

Now, multiply the fractions by the missing factors and evaluate:


  • \cfrac{q(q+1)}{(q+1)(q+2)(q+3)} +\cfrac{q+3}{(q+1)(q+2)(q+3)} =

  • \cfrac{q^2+q+q+3}{(q+1)(q+2)(q+3)}=

  • \cfrac{q^2+2q+3}{(q+1)(q+2)(q+3)}
User Ajay Singh
by
8.4k points