197k views
1 vote
Find the equation of the line
The line has a slope of 4 and passes through the point (2,-1).

2 Answers

4 votes
the equation of a line that has a slope of ‘4’ and passes through the point (2,-1) is

(y-(-1))=4*(x-2)

y+1=4x-8

4x-y=9
User Paul Androschuk
by
7.9k points
5 votes
We can start by knowing that the equation of the line will be in slope-intercept form, which is: y = mx + b. m is the slope of the line, and b is the y-intercept.

We know that the line has a slope of 4, and the line passes through the point (2,-1). So, we can use the point-slope form of a line to find the equation of the line.

The point-slope form of a line is given by y - y1 = m(x - x1), where m is the slope of the line, and (x1, y1) is a point on the line.

By substituting the values we know into the point-slope form, we get:
y - (-1) = 4(x - 2)
Simplifying:
y + 1 = 4x - 8
Subtract 1 from both sides:
y = 4x - 9
The equation of the line is y = 4x - 9.

Hope this helped!
User PreetyP
by
7.9k points