Answer:
![\displaystyle y' = (3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)])/(e^(2x))](https://img.qammunity.org/2022/formulas/mathematics/college/44povp1fe236bmv8d4e2u6dk0bjy757u8e.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Factoring
- Exponential Rule [Dividing]:

- Exponential Rule [Powering]:

Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/c6fshhoq1mws6w0d0la17c7k2dcytwd8kg.png)
Quotient Rule:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrfl3gpx3dh352g7a9uj6guyxz9uxwhvl3.png)
Trig Derivative:
![\displaystyle (d)/(dx)[cos(u)] = -u'sin(u)](https://img.qammunity.org/2022/formulas/mathematics/college/77bu3tv85psz98ud3ivkhtip52r4l42fc3.png)
eˣ Derivative:
![\displaystyle (d)/(dx)[e^u] = u'e^u](https://img.qammunity.org/2022/formulas/mathematics/college/cykyotpv57xopgzkjjszive9ieh35t4h8z.png)
Explanation:
Step 1: Define

Step 2: Differentiate
- [Derivative] Quotient Rule:
![\displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - (d)/(dx)[e^(2x)](3x + 1)cos(2x))/((e^(2x))^2)](https://img.qammunity.org/2022/formulas/mathematics/college/g29xc4tzc773z8kvo1x1uxx1allvap9nn0.png)
- [Derivative] [Fraction - Numerator] eˣ derivative:
![\displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/((e^(2x))^2)](https://img.qammunity.org/2022/formulas/mathematics/college/4cta2spirv5cv7milfb9qz23mvmynslaz2.png)
- [Derivative] [Fraction - Denominator] Exponential Rule - Powering:
![\displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/8tnissmzlnxh3b2cxjmga7sl68dulypoys.png)
- [Derivative] [Fraction - Numerator] Product Rule:
![\displaystyle y' = ([(d)/(dx)[3x + 1]cos(2x) + (d)/(dx)[cos(2x)](3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/wyc32afg75modkq0f8v7brau7x1f3p7ftd.png)
- [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:
]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/odrtxp7gx7mqixrj59yaqv16aavdv43lpi.png)
- [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:
]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/zyqzrupwt7y9x0yfvgjyzlyiunu02xw0fb.png)
- [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:
![\displaystyle y' = ([3cos(2x) -2sin(2x)(3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/thwos9w1kzvpwpor5ehglfnbsmt9aa3rh5.png)
- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = (e^(2x)[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)])/(e^(4x))](https://img.qammunity.org/2022/formulas/mathematics/college/se2zq6m6cq3vhy763wvuwv7w8uj4jhcewd.png)
- [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:

- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = (3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)])/(e^(2x))](https://img.qammunity.org/2022/formulas/mathematics/college/44povp1fe236bmv8d4e2u6dk0bjy757u8e.png)
Topic: AP Calculus AB/BC
Unit: Derivatives
Book: College Calculus 10e