123k views
0 votes
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​

User Iva
by
4.0k points

1 Answer

12 votes

Answer:


\displaystyle y' = (3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)])/(e^(2x))

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Factoring
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)
  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Trig Derivative:
\displaystyle (d)/(dx)[cos(u)] = -u'sin(u)

eˣ Derivative:
\displaystyle (d)/(dx)[e^u] = u'e^u

Explanation:

Step 1: Define


\displaystyle y = ((3x + 1)cos(2x))/(e^(2x))

Step 2: Differentiate

  1. [Derivative] Quotient Rule:
    \displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - (d)/(dx)[e^(2x)](3x + 1)cos(2x))/((e^(2x))^2)
  2. [Derivative] [Fraction - Numerator] eˣ derivative:
    \displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/((e^(2x))^2)
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:
    \displaystyle y' = ((d)/(dx)[(3x + 1)cos(2x)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))
  4. [Derivative] [Fraction - Numerator] Product Rule:
    \displaystyle y' = ([(d)/(dx)[3x + 1]cos(2x) + (d)/(dx)[cos(2x)](3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:
    \displaystyle y' = ([(1 \cdot 3x^(1 - 1))cos(2x) + (d)/(dx)[cos(2x)](3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:
    \displaystyle y' = ([3cos(2x) + (d)/(dx)[cos(2x)](3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:
    \displaystyle y' = ([3cos(2x) -2sin(2x)(3x + 1)]e^(2x) - 2e^(2x)(3x + 1)cos(2x))/(e^(4x))
  8. [Derivative] [Fraction - Numerator] Factor:
    \displaystyle y' = (e^(2x)[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)])/(e^(4x))
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:
    \displaystyle y' = (3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x))/(e^(2x))
  10. [Derivative] [Fraction - Numerator] Factor:
    \displaystyle y' = (3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)])/(e^(2x))

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

User Vincentf
by
4.8k points