Final answer
The exact values of sin(α + β) is767/493, cos(α - β) is 493/767, and tan(α - β) and -52/331, we use trigonometric identities and the given values of α and β.
Step-by-step explanation:
In order to find the exact values of the trigonometric functions, we need to use the given information about the angles α and β. Let's start with part (a) sin(α + β).
Using the trigonometric angle addition formula:
sin(α + β) = sin α cos β + cos α sin β.
Substituting the given values:
sin(α + β) = (21/29)(15/17) + (29/21)(17/15) = 767/493.
For part (b) cos(α - β), we use the trigonometric angle subtraction formula:
cos(α - β) = cos α cos β + sin α sin β.
Substituting the given values:
cos(α - β) = (21/29)(15/17) + (29/21)(17/15) = 493/767.
Finally, for part (c) tan(α - β), we can use the identity tan(α - β) = (tan α - tan β)/(1 + tan α tan β).
Substituting the given values:
tan(α - β) = (21/29 - 17/15)/(1 + (21/29)(17/15)) = -52/331.