6.9k views
2 votes
Find all unknown measures in the triangle. Round answers to the nearest tenth.

Find all unknown measures in the triangle. Round answers to the nearest tenth.-example-1
User Solvalou
by
7.8k points

1 Answer

6 votes

Answer:

  • A = 80.9°
  • C = 43.1°
  • a = 20.2

Explanation:

You want the missing side and angle measures in triangle ABC with AB = 14, AC = 17, and B = 56°.

Law of Sines

The law of sines tells you side lengths are proportional to the sine of their opposite angle:

a/sin(A) = b/sin(B) = c/sin(C)

Angle C

Side c is given, so we can find missing angle C from ...

C = arcsin(c/b·sin(B)) = arcsin(17/14·sin(56°)) ≈ 43.1°

Angle A

Angle A brings the sum of angles to 180°:

A = 180° -56° -43.1° = 80.9°

Side a

Now we have the information required to find side 'a':

a = b·sin(A)/sin(B) = 17·sin(80.9°)/sin(56°) ≈ 20.2

The missing measures are (A, C, a) = (80.9°, 43.1°, 20.2).

__

Additional comment

We have only rounded the final values in the computations. Intermediate values are used to full calculator precision.

Find all unknown measures in the triangle. Round answers to the nearest tenth.-example-1
User Npace
by
8.1k points