29.6k views
3 votes
Circle with the center at (−1, 3) and passes through the point (3, 7)

1 Answer

7 votes

Answer:

Explanation:

To find the equation of a circle, we need to know the center of the circle and its radius.

The center of the circle is given as (-1, 3), and the circle passes through the point (3, 7).

We can use the distance formula to find the radius of the circle:

r = √[(x2 - x1)^2 + (y2 - y1)^2]

= √[(3 - (-1))^2 + (7 - 3)^2]

= √[(4)^2 + (4)^2]

= √32

So the radius of the circle is √32.

Now, we can use the standard form of the equation of a circle:

(x - h)^2 + (y - k)^2 = r^2

where (h, k) is the center of the circle, and r is the radius.

Plugging in the values we found, we get:

(x - (-1))^2 + (y - 3)^2 = (√32)^2

Simplifying this equation, we get:

(x + 1)^2 + (y - 3)^2 = 32

Therefore, the equation of the circle with the center at (-1, 3) and passing through the point (3, 7) is (x + 1)^2 + (y - 3)^2 = 32.

User Michael Ros
by
8.6k points

No related questions found