Answer:
y = 2(x + 1.5)² + 0.5
Explanation:
"To convert the standard form y = ax² + bx + c to vertex form:
Extract a from the first two terms: y = a[x² + (b/a)x] + c.
Add and subtract (b/(2a))² inside the bracket: y = a[x² + (b/a)x + (b/(2a))² - (b/(2a))²] + c.
Use the short multiplication formula: y = a[(x + b/(2a))² - (b/(2a))²] + c.
Expand the bracket: y = a(x + b/(2a))² - b²/(4a) + c.
This is your vertex form with h = -b/(2a) and k = c - b²/(4a)."
^^ not my explanation!!