16.0k views
4 votes
Sally recently started a new job at at a furniture store and makes

$10.25 per hour. Last week, Sally earned $110.39. Her boss told her
that the company is only able to pay her less than $200 for each
two-week period that she works.
Write an inequality to represent how many hours she can work this
week. Use x for the variable.

2 Answers

4 votes
To find the maximum number of hours Sally can work in a week, we need to use the given information to write an inequality. Let x be the number of hours Sally works in a week.

Since Sally earns $10.25 per hour, her weekly earnings can be represented as:

10.25x

We know that Sally earned $110.39 last week, so we can write an equation:

10.25x = 110.39

To find the maximum number of hours Sally can work in a week, we need to use the fact that she can only be paid less than $200 for each two-week period. Since there are two weeks in a pay period, Sally can be paid at most:

2 x $200 = $400

We can use this information to write an inequality:

10.25x ≤ $400

To solve for x, we divide both sides by 10.25:

x ≤ $400 / 10.25

x ≤ 39.02

Therefore, Sally can work at most 39 hours in a week.
User Sultan Maulana
by
8.4k points
3 votes
Let x be the number of hours Sally can work in a week.

Since Sally makes $10.25 per hour, her weekly pay can be represented by 10.25x.

Her boss told her that the company is only able to pay her less than $200 for each two-week period that she works. So, her total pay for two weeks would be less than $400.

Therefore, we can write the following inequality to represent how many hours she can work this week:

10.25x < 200

Dividing both sides by 10.25, we get:

x < 19.51

Therefore, Sally can work at most 19.51 hours this week to earn less than $200 for the week.