148k views
4 votes
Help.. Given
,
,
, and
. Determine the magnitude of
.

Help.. Given , , , and . Determine the magnitude of .-example-1

1 Answer

6 votes

Given:


||\vec u||=8, \ \theta_{\vec {u}}=55 \textdegree


||\vec v||=6, \ \theta_{\vec {v}}=40 \textdegree

Find:


||\vec u + \vec v || = \ ??

In order to complete this problem we first have split each vector given in magnitude-angle form into its components.


\vec u = < \vec u_x, \vec u_y > = < ||\vec u||cos \theta_{\vec {u}},||\vec u||sin \theta_{\vec {u}} >


\vec v = < \vec v_x, \vec v_y > = < ||\vec v||cos \theta_{\vec {v}},||\vec v||sin \theta_{\vec {v}} >

For vector u:


\vec u = < (8)cos(55\textdegree),(8)sin (55\textdegree) > \Longrightarrow \boxed{\vec u = < 4.589,6.553 > }

For vector v:


\vec v = < (6)cos(40\textdegree),(6)sin (40\textdegree) > \Longrightarrow \boxed{\vec v = < 4.596,3.857 > }

Now we have vectors u and v split into their x and y components. We can now add these vectors.


\vec u + \vec v = < \vec{u_x}+\vec{v_x},\vec{u_y}+\vec{v_y} >


\Longrightarrow \vec u + \vec v = < 4.589+4.596,6.553+3.857 > \Longrightarrow \boxed{\vec u + \vec v = < 9.185,10.41 > }

The question asks for the magnitude of vectors u plus v. So,


||\vec u + \vec v|| = √(((\vec u + \vec v)_x)^2+((\vec u + \vec v)_y)^2) and the angle,
\theta=tan^(-1)(((\vec u + \vec v)_y)/((\vec u + \vec v)_x) )


\Longrightarrow ||\vec u + \vec v|| = √((9.185)^2+(10.41)^2) \Longrightarrow \boxed


\Longrightarrow\theta=tan^(-1)((10.41)/(9.185) ) \Longrightarrow\boxed{\theta=48.577 \textdegree}

Thus,
\boxed{ ||\vec u + \vec v||=13.883 \ at \ {\theta=48.577 \textdegree}} \therefore Sol.

User Cymen
by
7.8k points