To calculate the error associated with the given calculation, we need to use the formula for error propagation. This formula tells us how uncertainties in the input values affect the uncertainty in the output value.
The formula for the error propagation in the case of addition and subtraction is:
δf = sqrt(δA^2 + δB^2 + δC^2 + δD^2 + δE^2)
where δf is the uncertainty in the output value, and δA, δB, δC, δD, and δE are the uncertainties in the input values.
Using the given values for A, B, C, D, and E, we can calculate the uncertainty in the output value:
δA = 0.02
δB = 2.68
δC = 2.57
δD = 0.0257
δE = 0.8
A+B-C CBD + E +B² = 12.36 + 125.03 - 100.32*5.2483 + 2.5 + 125.03^2
= -25575.2927
δf = sqrt(δA^2 + δB^2 + δC^2 + δD^2 + δE^2)
= sqrt(0.02^2 + 2.68^2 + 2.57^2 + 0.0257^2 + 0.8^2)
= 3.548
Therefore, the error associated with the given calculation is 3.548. We can express the final result as:
A+B-C CBD + E +B² = -25575.29 ± 3.55.