53.0k views
0 votes
Consider the line 4x- 8y = 5.

What is the slope of a line perpendicular to this line?
What is the slope of a line parallel to this line?

User Porges
by
8.1k points

2 Answers

4 votes

The slope of a line perpendicular to the given line is -2.

The slope of a line parallel to the given line is 1/2.

To find the slopes of lines perpendicular and parallel to the given line, we first need to rewrite the equation in slope-intercept form (y = mx + b), where m is the slope and b is the y-intercept.

Given equation: 4x - 8y = 5

Rearrange the equation to solve for y:

-8y = -4x + 5

y = (1/2)x - (5/8)

Now that the equation is in slope-intercept form, we can identify the slope of the given line:

m1 = 1/2

For a line to be parallel to the given line, it must have the same slope. So, the slope of a line parallel to this line is:

m_parallel = 1/2

For a line to be perpendicular to the given line, its slope must be the negative reciprocal of the slope of the given line. So, the slope of a line perpendicular to this line is:

m_perpendicular = -1/m1 = -1/(1/2) = -2

User Ingry
by
8.6k points
5 votes
To find the slope of a line perpendicular to 4x - 8y = 5, we need to find the slope of the given line first. We can write the given equation in slope-intercept form:

4x - 8y = 5

-8y = -4x + 5

y = (1/2)x - 5/8

The slope of the given line is 1/2.

The slope of a line perpendicular to this line would be the negative reciprocal of this slope. So the slope of the perpendicular line would be -2.

The slope of a line parallel to the given line would be the same as the slope of the given line, which is 1/2.
User Patrice Bernassola
by
8.2k points