39.7k views
2 votes
Prove that
sin0/(sec 0+tan 0-1)+cos0/ (cosec 0+ cot 0-1)=1​

1 Answer

2 votes

Answer:

Prove the following identitics: tan 0 + cot 0 = I/(sin 0 cos 0) 0 + tan 0 sec 0 = cosec 0 'sec? 0. 18 cosec = cosec? 0 = tan? 0 cot2 19 sec? 0 sin ' 0 =cos? 0 'sin? 20 cos4 (sec 0 + tan 0) (sec 0 _ tan 0) = 1 2 sin? 0 = cOs? 0 _ 'sin? 0. 22 2 cos? 0_I=1 23 sec? 0 + cosec 0 = sec? 0 cosec? sin? , COs? 24 sec" 0 cosec" 0 = cos 0 sin" 0 25 =I tan 0 + 1 cot? 0 +4 26 (sec? 0 1) (cosec? 0 1) = [ 27 ((sec? 0 _0)+ V(cosec" 0 _ !) = sec € cosec 0 28 (sec? tan? 0) + V(cosec? 0 ~ cot? 0) = 2 cos? 0 29 =1 sin sec? 0 _ 1 sec 0 cosec 0 tan 0 + cot 0 30 tan 0 cot 0 sec 0 + cosec 0 cos 0 sin 0 31 =l V( + tan? 0) V( + cot? 0) Eliminate 0 from the following equations: 32 x = 4 cos 0, y = b sin 0. 33 x = 4 cot 0,y = b cosec 0. 34 x=a tan 0,y =b cos 0. 35 x = ] sin 0, y = [ + cos 0, 36 x =a sec 0,y = b +c cos 0. 37 x=a cosec 0, y = b sec 0. 38 X=l+ tan 0,y = cos 0. 39 x=sin 0 + cos 0,y = sin 0 40 cos X = sCc 0 + tan 0, y = sCc 0 ~ tan 0.

User Ambientlight
by
7.8k points