46.8k views
3 votes
Verify that the following identity is true. You must show all work to receive credit! (1 - cos a) (1 + cot? a) = 1

User Joald
by
8.1k points

1 Answer

4 votes

Answer:

To verify the given identity:

(1 - cos a) (1 + cot a)

= (1 - cos a) (1 + cos a / sin a) [since cot a = cos a / sin a]

= 1 - cos^2 a / sin a + cos a - cos^2 a / sin a

= 1 - (cos^2 a + cos^2 a) / sin a + cos a

= 1 - 2 cos^2 a / sin a + cos a

= 1 - 2 (1 - sin^2 a) / sin a + cos a [since cos^2 a = 1 - sin^2 a]

= 1 - 2 / sin a + 2 sin a / sin a + cos a

= 1 - 2 / sin a + 2 + cos a

= 1 + 2 (1 - sin a) / sin a

= 1 + 2 cos^2 a / sin a

= 1 + 2 cot^2 a

= (1 + cot^2 a) + 2 cot^2 a

= cosec^2 a + 2 cot^2 a

= 1 + cot^2 a [since cosec^2 a = 1 + cot^2 a]

Therefore, (1 - cos a) (1 + cot a) = 1 is true.

User Alena  Melnikova
by
7.5k points

No related questions found