Explanation:
It is not clear from the given information which angles and sides are being referred to as "107⁰", "-x-8", "-42-7", and "3y-1". However, we can use some properties of rhombuses to solve for x, y, and z.
Opposite angles in a rhombus are equal. Therefore, if one angle is 107⁰, then the opposite angle is also 107⁰.
The diagonals of a rhombus are perpendicular bisectors of each other. This means that they intersect at a right angle and divide each other into two equal parts.
The diagonals of a rhombus bisect each other's angles. This means that the angles formed by each diagonal with the sides of the rhombus are equal.
Using these properties, we can set up some equations to solve for x, y, and z:
Let's assume that "-x-8" and "-42-7" are the lengths of the diagonals of the rhombus, and that "3y-1" is the length of one of the sides.
Since the diagonals bisect each other's angles, we know that the angles formed by each diagonal with the side of the rhombus are equal. Let's call each of these angles "z":
-z + 107⁰ + z = 180⁰ (sum of angles in a triangle)
107⁰ = 180⁰ - 2z
2z = 73⁰
z = 36.5⁰
Now let's use the fact that the diagonals are perpendicular bisectors of each other:
(-x-8)/2 = (-42-7)/2
-x-8 = -49
-x = -41
x = 41
Finally, let's use the fact that the sides of a rhombus are equal:
-x-8 = 3y-1
41-8 = 3y-1
33 = 3y
y = 11
Therefore, the values of x, y, and z in the rhombus are:
x = 41
y = 11
z = 36.5⁰