97.3k views
5 votes
What expression is equivalent to 3+2(x+4)(x-4)

1 Answer

3 votes

Answer:


\large\boxed{\tt 2x^(2) - 29}

Explanation:


\textsf{We are asked what expression is equivalent to the given expression.}


\textsf{Note that we can find an equivalent expression by simplifying the expression we}


\textsf{already have. We can combine like terms, and simplify by using the \boxed{\textsf{FOIL}} method.}


\large\underline{\textsf{What is the FOIL Method?}}


\textsf{The FOIL Method is a method that can broken down which tells us how to}


\textsf{multiply 2 binomials. Remember that binomials are expressions with 2 terms.}


\underline{\textsf{FOIL Means;}}


\textsf{F - Front terms.}


\tt (\ \boxed{\tt4x}+3)(\ \boxed{\tt 3x}+1)


\textsf{O - Outer terms.}


\tt (\ \boxed{\tt 4x}+3 )(3x+ \boxed{\tt 1} \ )


\textsf{I - Inside terms.}


\tt (4x+\boxed{\tt3} \ )(\ \boxed{\tt 3x}+1)


\textsf{L - Last Terms.}


\tt (4x+\boxed{\tt3} \ )(3x+ \boxed{\tt 1} \ )


\textsf{We should also use the Distributive Property.}


\boxed{ \begin{minipage}{20 em} \\ \underline{\textsf{\large Distributive Property;}} \\ \\ \textsf{Distributive Property is a property that allows us to multiply the term to the \underline{left} of the parentheses into the terms \underline{inside} the parentheses.} \\ \\ \underline{\textsf{\large Example;}} \\ \tt a(b+c) = ab+\tt ac \\ \textsf{A will multiply with b and c as a is the term to the left of the parentheses, and b and c are inside the parentheses.}\end{minipage}}


\large\underline{\textsf{Solving;}}


\tt 3+2(x+4)(x-4)


\underline{\textsf{Use the Distributive Property;}}


\tt 2(x+4) = 2x + 8


\tt 3+(2x+8)(x-4)


\underline{\textsf{Use the FOIL Method;}}


\textsf{F - Front terms.}


\tt (\ \boxed{\tt2x}+8)(\ \boxed{\tt x}-4)


\textsf{O - Outer terms.}


\tt (\ \boxed{\tt 2x}+8 )(x- \boxed{\tt 4} \ )


\textsf{I - Inside terms.}


\tt (2x+\boxed{\tt 8} \ )(\ \boxed{\tt x}-4)


\textsf{L - Last Terms.}


\tt (2x+\boxed{\tt 8} \ )(x- \boxed{\tt 4} \ )


\underline{\textsf{We should have;}}


\large\boxed{\tt 2x^(2) - 29}


\textsf{(After Combining Like Terms)}

User MCMastery
by
8.4k points