53.9k views
1 vote
What is the product of 3a + 5 and 2a2 + 4a – 2?

A. 6a3 + 22a2 + 14a – 10
B. 6a3 + 22a2 + 26a –10
C. 18a3 + 10a2 + 14a – 10
D. 28a3 + 14a – 10

User Ricosrealm
by
8.6k points

1 Answer

3 votes

-------------------------------------------------------------------------------------------------------------

Answer: Option A,
\textsf{6a}^3\textsf{ + 22a}^2\textsf{ + 14a - 10}

-------------------------------------------------------------------------------------------------------------

Given:
\textsf{3a + 5 and 2a}^2\textsf{ + 4a - 2}

Find:
\textsf{The product of the two given equations}

Solution: The first step toward solving this problem would be to distribute the 3a and 5 to each of the values in the second equation.


  • \textsf{(3a + 5)(2a}^2\textsf{ + 4a - 2)}

  • \textsf{(2a}^2\textsf{ * 3a) + (2a}^2\textsf{ * 5) + (4a * 3a) + (4a * 5) + (-2 * 3a) + (-2 * 5)}

After doing so, we can simplify each of the expressions until we have one equation. This can be done by both some simple algebra and combining of like terms.


  • \textsf{(6a}^3\textsf{) + (10a}^2\textsf{) + (12a}^2\textsf{) + (20a) + (-6a) + (-10)}

  • \textsf{6a}^3\textsf{ + 22a}^2\textsf{ + 14a + -10}

Therefore, the correct answer to this question is Option A,
\textsf{6a}^3\textsf{ + 22a}^2\textsf{ + 14a - 10}.

User CheeseFlavored
by
8.4k points