If -4 is a zero with multiplicity 1, then (x + 4) is a factor of the polynomial. Similarly, if 1 is a zero with multiplicity 2, then (x - 1)^2 is a factor of the polynomial. Therefore, we can write the polynomial in factored form as:
f(x) = a(x + 4)(x - 1)^2
where "a" is a constant that we need to determine.
To find "a", we use the fact that f(0) = -12. Substituting x = 0 into the equation above, we get:
f(0) = a(0 + 4)(0 - 1)^2
-12 = -4a
Solving for "a", we get:
a = 3
Therefore, the polynomial is:
f(x) = 3(x + 4)(x - 1)^2
Note that this polynomial has a zero at x = -4 (with multiplicity 1), a zero at x = 1 (with multiplicity 2), and f(0) = -12.