209k views
4 votes
Find the distance between these points in two ways: (-2, 5) and (4, 13).

a. Use the point ( - 2, 5) as (x1, y1) and the point (4, 13) as (x2, y2) in the distance
formula.

User Bones
by
4.4k points

1 Answer

11 votes

Answer:


\displaystyle d = 10

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point (-2, 5)

Point (4, 13)

Step 2: Identify

x₁ = -2, y₁ = 5

x₂ = 4, y₂ = 13

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((4+2)^2+(13-5)^2)
  2. [Distance] [√Radical] (Parenthesis) Add/Subtract:
    \displaystyle d = √((6)^2+(8)^2)
  3. [Distance] [√Radical] Evaluate exponents:
    \displaystyle d = √(36+64)
  4. [Distance] [√Radical] Add:
    \displaystyle d = √(100)
  5. [Distance] [√Radical] Evaluate:
    \displaystyle d = 10
User Mola
by
5.3k points