Answer:
x=0.5π+kπ, k∈Z v x=1/6π+2kπ, k∈Z v x=5/6π+2kπ, k∈Z
Explanation:
f(x)=-sin2x+cosx
f(x)=0 , sin2x=2sinxcosx
-sin2x+cosx=0
-2sinxcosx+cosx=0
cosx(-2sinx+1)=0
cosx=0 v -2sinx+1=0
cosx=0 v sinx=0.5
cosx=0 when x=0.5π+kπ, k∈Z On the graph of cosx, the value of 0 repeats cyclically by π. The rest value repeat cyclically by 2π.
sinx=0.5 x=1/6π+2kπ, k∈Z v x=5/6π+2kπ, k∈Z On the graph sinx, the value of 0.5 for x=1/6π (1st quater) and x=5/6π (2nd quater) repeats cyclically by 2π.
x=0.5π+kπ, k∈Z v x=1/6π+2kπ, k∈Z v x=5/6π+2kπ, k∈Z