19.6k views
5 votes
HELP ASAP (EASY AND PLS EXPLANATION CUZ I DONT UNDERSTAND IF ITS -17 OR 17 SO PLS EXPLAIN HOW TO KNOW HOW TO KNOW THAT)

What is the distance from (−4, 7) to (−4, −10)?

17 units
−17 units
3 units
−3 units

2 Answers

4 votes

Answer:

A. 17 units

Explanation:

The distance between two points with coordinates

(-4,7) and (-4,-10) is:

17.00 units

User AchmadJP
by
8.2k points
3 votes

Answer:

17 units

Explanation:

You want to know the distance from (-4, 7) to (-4, -10).

Distance

You can find the distance between two points using the distance formula:

d = √((x2 -x1)² +(y2 -y1)²)

For the given points, the distance is ...

d = √((-10 -7)² +(-4 -(-4))²) = √((-17)² +0²) = √289 = 17

The distance between the two points is 17 units.

__

Additional comments

The distance formula makes use of the positive square root, so it will always give a positive result.

"Distance" and "displacement" are different. "Distance" and "length" are always positive.

"Displacement" is measured relative to a reference point, with a positive direction defined. Negative displacements will be in the opposite direction from positive displacements.

The point (-4, -10) is to the left of the point (-4, 7) on the horizontal line y=-4. Its displacement from (-4, 7) is -17 units, but its distance from (-4, 7) is 17 units.

You may have noticed that the distance formula computed ...

√(-17)² = 17

It will be generally true that ...

√(x²) = |x|

The square root symbol always indicates the positive square root. That is why we use ±√( ) when we want to consider both possible square roots.

User Jorrick Sleijster
by
8.3k points