108,159 views
9 votes
9 votes
Given MN is perpendicular to MP, PQ is perpendicular to MP, and NR is congruent to OR. Prove triangle NRP is congruent to triangle QRM

Given MN is perpendicular to MP, PQ is perpendicular to MP, and NR is congruent to-example-1
User Sheharyar
by
2.9k points

1 Answer

6 votes
6 votes

1.
\overline{MN} \perp \overline{MP},
\overline{PQ} \perp \overline{MP} (given)

2.
\angle NMP and
\angle MPQ are right angles (definition of perpendicular lines)

3.
\angle NMP \cong \angle MPQ (all right angles are congruent)

4.
\overline{NR} \cong \overline{QR} (given)

5.
\angle NRM \cong \angle QRP (vertical angles)

6.
\triangle PRQ \cong \triangle MRN (AAS)

7.
\overline{MR} \cong \overline{RP} (CPCTC)

8.
\angle NRP \cong \angle MRQ (vertical angles)

9.
\triangle NRP \cong \triangle QRM (SAS)

User KrishnaG
by
2.5k points