Answer:
m∠2 = 110°
m∠4 = 110°
Explanation:
Corresponding Angles Postulate
When a straight line intersects two parallel straight lines, the resulting corresponding angles are congruent.
Vertical Angles Theorem
When two straight lines intersect, the opposite vertical angles are congruent.
Transitive Property of Equality
If any angles are congruent to the same angle, then they are congruent to each other.
--------------------------------------------------------------------------------------
As line p is parallel to line q, according to the Corresponding Angles Postulate:
⇒ m∠2 = m∠10
According to the Vertical Angles Theorem:
⇒ m∠10 = m∠13
According to the Transitive Property of Equality:
⇒ m∠2 = m∠13
Therefore:
⇒ 8x + 14 = 10x - 10
⇒ 8x + 14 - 8x = 10x - 10 - 8x
⇒ 14 = 2x - 10
⇒ 14 + 10 = 2x - 10 + 10
⇒ 24 = 2x
⇒ 2x = 24
⇒ 2x ÷ 2 = 24 ÷ 2
⇒ x = 12
Substitute the found value of x into the expression for the measure of angle 2:
⇒ m∠2 = 8(12) + 14
⇒ m∠2 = 96 + 14
⇒ m∠2 = 110°
--------------------------------------------------------------------------------------
As line p is parallel to line q, according to the Corresponding Angles Postulate:
⇒ m∠12 = m∠4
⇒ 15y + 5 = 13y + 19
⇒ 15y + 5 - 13y = 13y + 19 - 13y
⇒ 2y + 5 = 19
⇒ 2y + 5 - 5 = 19 - 5
⇒ 2y = 14
⇒ 2y ÷ 2 = 14 ÷ 2
⇒ y = 7
Substitute the found value of y into the expression for the measure of angle 4:
⇒ m∠4 = 13(7) + 19
⇒ m∠4 = 91 + 19
⇒ m∠4 = 110°