60.8k views
0 votes
Please help yall! this is driving me insane. pictures attached!

Please help yall! this is driving me insane. pictures attached!-example-1
Please help yall! this is driving me insane. pictures attached!-example-1
Please help yall! this is driving me insane. pictures attached!-example-2
User Jmaurier
by
7.3k points

1 Answer

4 votes

Answer:


(\cos x)/(1- \sin x)=\sec x + \tan x


(\cos x)/(1- \sin x)=\boxed{(1)/(\cos x) + (\sin x)/(\cos x)}


(\cos x)/(1- \sin x)=\boxed{(1+\sin x)/(\cos x)}


(\cos x)/(1- \sin x)=\boxed{(\cos x(1+\sin x))/(\cos^2 x)}


(\cos x)/(1- \sin x)=\boxed{(\cos x(1+\sin x))/(1-\sin^2 x)}


(\cos x)/(1- \sin x)=\boxed{(\cos x(1+\sin x))/((1-\sin x)(1+ \sin x))}


(\cos x)/(1- \sin x)=\boxed{(\cos x)/(1- \sin x)}

Explanation:

Given equation:


(\cos x)/(1- \sin x)=\sec x + \tan x


\textsf{Use\;the\;identities\;\;$\boxed{\sec x=(1)/(\cos x)}$\;\;and\;\;$\boxed{\tan x=(\sin x)/(\cos x)}$\;:}


\implies (\cos x)/(1- \sin x)=(1)/(\cos x) + (\sin x)/(\cos x)


\textsf{Apply the fraction rule:} \quad (a)/(c)+(b)/(c)=(a+b)/(c)


\implies (\cos x)/(1- \sin x)=(1+\sin x)/(\cos x)

Multiply the numerator and denominator by cos x:


\implies (\cos x)/(1- \sin x)=(\cos x(1+\sin x))/(\cos^2 x)


\textsf{Use\;the\;identity\;\;$\boxed{\sin^2x+\cos^2x=1}$\;\;to\;rewrite\;the\;denominator:}


\implies (\cos x)/(1- \sin x)=(\cos x(1+\sin x))/(1-\sin^2 x)


\textsf{Use\;the\;Difference\;of\;Two\;Squares\;formula\;\;$\boxed{a^2- b^2= (a - b)(a + b)}$}\\\textsf{to\;rewrite\;the\;denominator:}


\implies (\cos x)/(1- \sin x)=(\cos x(1+\sin x))/((1-\sin x)(1+ \sin x))

Cancel the common term (1 + sin x):


\implies (\cos x)/(1- \sin x)=(\cos x)/(1- \sin x)

Thus proving the identity.

User Clodagh
by
8.1k points