Answer:
Let's use a system of equations to solve the problem.
Let x be the number of adult tickets sold and y be the number of children's tickets sold.
We know that the total number of tickets sold is 960, so we can write:
x + y = 960
We also know that the total revenue from the ticket sales was $11,920. The revenue from the adult tickets is $15 times the number of adult tickets sold, and the revenue from the children's tickets is $11 times the number of children's tickets sold. So we can write:
15x + 11y = 11,920
We now have two equations with two unknowns, which we can solve using substitution or elimination. Let's use elimination:
Multiply the first equation by 11 to get 11x + 11y = 10,560
Subtract the second equation from the first to get:
15x + 11y - 15x - 11y = 11,920 - 10,560
Simplifying, we get:
4x = 1,360
Dividing both sides by 4, we get:
x = 340
So 340 adult tickets were sold.
Substituting this value back into the first equation, we get:
340 + y = 960
Solving for y, we get:
y = 620
So 620 children's tickets were sold.
Therefore, there were 340 adult tickets sold and 620 children's tickets sold.