Answer:
- [ln (4 - x) - ln (x + 1/2)] × [ln (4 - x) + 2 ln (x + 1/2)] = 0
----------------------------------
Given equation:
- ln² (4 - x) + ln (4 - x) ln (x + 1/2) - 2 ln² (x + 1/2) = 0
Substitute:
- ln (4 - x) = p, ln (x + 1/2) = q
Then we have:
- p² + pq - 2q² =
- p² - q² + pq - q² =
- (p + q)(p - q) + q(p - q) =
- (p - q)(p + q + q) = 0
- (p - q)(p + 2q) = 0
Substitute back:
- ln² (4 - x) + ln (4 - x) ln (x + 1/2) - 2 ln² (x + 1/2) = 0
- [ln (4 - x) - ln (x + 1/2)] × [ln (4 - x) + 2 ln (x + 1/2)] = 0