297,375 views
36 votes
36 votes
0=-16r^2-50
algebra question

User Steve Temple
by
2.6k points

2 Answers

15 votes
15 votes


r=(5i√(2) )/(4), -(5i√(2) )/(4) or simply just say ±
(5i√(2) )/(4).

Hope this helps!

User Zvonicek
by
2.8k points
15 votes
15 votes

Answer:


r=(5√(2))/(4)}\:i\:,\quad \;\;r=-(5√(2))/(4)}\:i

Explanation:

To solve the given equation, rearrange the equation to isolate r.

Given equation:


0=-16r^2-50

Add 16r² to both sides of the equation:


0+16r^2=-16r^2-50+16r^2


16r^2=-50

Divide both sides of the equation by 16:


(16r^2)/(16)=(-50)/(16)


r^2=-(25)/(8)


\textsf{For\;\:}x^2=f\left(a\right)\textsf{\:the\:solutions\:are\:\:}x=\pm√(f\left(a\right))


r=\pm\sqrt{-(25)/(8)}


\textsf{Apply\;the\:radical\:rule:}\;\:√(-a)=√(a)√(-1)


r=\pm\sqrt{(25)/(8)}√( -1)


\textsf{Apply\;the\:imaginary\:number\:rule:}\;\:√(-1)=i


r=\pm\sqrt{(25)/(8)}\:i


\textsf{Apply\;the\:radical\:rule:}\:\:\sqrt{(a)/(b)}=(√(a))/(√(b)),\:\quad \:a\ge 0,\:b\ge 0


r=\pm(√(25))/(√(8))\:i

Simplify the numerator and denominator of the fraction:


r=\pm(5)/(2√(2))\:i

Rationalise the denominator by multiply the numerator and denominator by √2:


r=\pm(5\cdot√(2))/(2√(2)\cdot √(2))\:i


r=\pm(5√(2))/(4)}\:i

Therefore, the solutions to the given equation are:


r=(5√(2))/(4)}\:i\:,\quad \;\;r=-(5√(2))/(4)}\:i

User Marienke
by
3.1k points