254,626 views
3 votes
3 votes
if you do this page for me i’ll give you a lott of points.. i’m failing so bad lol and don’t understand

if you do this page for me i’ll give you a lott of points.. i’m failing so bad lol-example-1
User Ruiquelhas
by
2.7k points

1 Answer

10 votes
10 votes

Answer:

See answers in explanation

Explanation:

For 1.)

A.)


x-y=7\\x+y=5

For elimination, attempt to remove one variable. For these problems, the two equations can be added together without modification to remove y:


x-y=7\\+\\x+y=5\\2x=12\\(2x)/(2)=(12)/(2)\\x=6

Now, substitute x for 6 in equation 2:


6+y=5\\(6+y)-6=(5)-6\\y=-1

To check,


6-(-1)=7\\7=7

and


6+(-1)=5\\5=5

B.)


2m+5n=3\\-2m-n=5\\\\4n=8\\(4n)/(4)=(8)/(4)\\n=2

Substitute into equation 2:


-2m-(2)=5\\(-2m-2)+2=5+2\\-2m=7\\(-2m)/(-2)=(7)/(-2)\\m=-(7)/(2)

For part 2, a manipulation must be made for each problem to eliminate a variable:

A.)


x-y=15\\4x+2y=30\\\\2(x-y=15)\\4x+2y=30\\\\2x-2y=30\\4x+2y=30\\\\6x=60\\(6x)/(6)=(60)/(6)\\x=10

Substitute into equation 2:


4(10)+2y=30\\40+2y=30\\2(20+y)=30\\(2(20+y))/(2)=(30)/(2)\\20+y=15\\(20+y)-20=(15)-20\\y=-5

B.)


2c+3d=17\\5c+6d=32\\\\-2(2c+3d=17)\\5c+6d=32\\\\-4c-6d=-34\\5c+6d=32\\c=-2

Substitute into equation 2:


5(-2)+6d=32\\-10+6d=32\\(-10+6d)+10=(32)+10\\6d=42\\(6d)/(6)=(42)/(60)\\d=7

For question 3, both equations in each system must be manipulated to eliminate a variable:

A.)


2x+3y=16\\5x-2y=21\\\\2(2x+3y=16)\\3(5x-2y=21)\\\\4x+6y=32\\15x-6y=63\\\\19x=95\\(19x)/(19)=(95)/(19)\\x=5

Substitute into equation 2:


5(5)-2y=21\\25-2y=21\\(25-2y)-25=(21)-25\\-2y=-4\\(-2y)/(-2)=(-4)/(-2)\\y=2

B.)


6s-7t=25\\15s+3t=42\\\\3(6s-7t=25)\\7(15s+3t=42)\\\\18s-21t=75\\105s+21t=294\\\\123s=369\\(123s)/(123)=(369)/(123)\\s=3

Substitute into equation 2:


15(3)+3t=42\\45+3t=42\\(45+3t)-45=(42)-45\\3t=-3\\(3t)/(3)=(-3)/(3)\\t=-1

I didn't write out all the checks, but all these answers satisfy their original equations. Hope this will help you out.

User Stephopolis
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.