295,431 views
45 votes
45 votes
Find the magnitude of the projection of〈-4,-4⟩ onto the vector ⟨−1,−6⟩

User Beastieboy
by
3.0k points

1 Answer

19 votes
19 votes

Answer:


(28√(37))/(37) \approx 4.6\; \sf (nearest\;tenth)

Explanation:


\boxed{\begin{minipage}{7 cm}\underline{Scalar projection}\\\\Scalar projection $=(u \cdot v)/(|u|)$\\\\where:\\ \phantom{ww}$\bullet$ $u$ is the vector being projected onto.\\\end{minipage}}

Given:

  • u = 〈-1, -6⟩
  • v = 〈-4, -4⟩

Calculate the magnitude of vector u:


\implies |u|=√((-1)^2+(-6)^2)=√(37)

The scalar projection is the magnitude of the vector projection.

Therefore, the magnitude of the projection of vector v onto vector u is:


\implies (u \cdot v)/(|u|)=(\langle -1, -6\rangle \cdot \langle-4, -4\rangle)/(√(37))=(4 +24)/(√(37))=(28)/(√(37))=(28√(37))/(37)

User Wilmar
by
2.9k points