Answer:
y(x) = integral(6 c^2 - 20 x^3)/(5 x^2 + 3) dx = -2 x^2 + 1/5 log(5 i x + sqrt(15)) (-i sqrt(15) c^2 + 6) + 1/5 log(-5 i x + sqrt(15)) (i sqrt(15) c^2 + 6) + k_1, where k_1 is an arbitrary constant.
Explanation:
Rewrite the equation to -((6 c^2 - 20 x^3) dx)/(3 + 5 x^2) + dy = 0 and solve
Solve (dy(x))/(dx) = (6 c^2 - 20 x^3)/(5 x^2 + 3):
Integrate both sides with respect to x:
Answer: y(x) = integral(6 c^2 - 20 x^3)/(5 x^2 + 3) dx = -2 x^2 + 1/5 log(5 i x + sqrt(15)) (-i sqrt(15) c^2 + 6) + 1/5 log(-5 i x + sqrt(15)) (i sqrt(15) c^2 + 6) + k_1, where k_1 is an arbitrary constant.