122k views
3 votes
Enter the values for the highlighted variables to
complete the steps to find the sum:

Enter the values for the highlighted variables to complete the steps to find the sum-example-1
User BlackSpy
by
8.9k points

1 Answer

3 votes

The values for the variables are:


\[ a = -1, \quad b = -9, \quad c = 9, \quad d = 3, \quad e = 3, \quad f = 2, \quad g = (3)/(2) \]

Let's work through the steps to find the values of the variables
\( a, b, c, d, e, f, g \) in the given expression:


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) + (9)/(a(2x-6)) = (3x)/(2x-6) + (b)/(2x-6) = (3x-c)/(2x-6) = (d(x-e))/(f(x-3)) = g \]

Step 1:


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) + (9)/(a(2x-6)) \]

To make the denominators the same, set
\( a = -1 \).


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) - (9)/(2x-6) \]

Step 2:


\[ (3x)/(2x-6) - (9)/(2x-6) = (3x)/(2x-6) + (b)/(2x-6) \]

To make the numerators the same, set
\( b = -9 \).


\[ (3x)/(2x-6) - (9)/(2x-6) = (3x-9)/(2x-6) \]

Step 3:


\[ (3x-9)/(2x-6) = (3x-c)/(2x-6) \]

To make the numerators the same, set
\( c = 9 \).


\[ (3x-9)/(2x-6) = (3x-9)/(2x-6) \]

Step 4:


\[ (3x-9)/(2x-6) = (d(x-e))/(f(x-3)) \]

To make the denominators and numerators the same, set
\( d = 3 \), \( e = 3 \), and \( f = 2 \).


\[ (3x-9)/(2x-6) = (3(x-3))/(2(x-3)) \]

Step 5:


\[ (3(x-3))/(2(x-3)) = g \]

To simplify the expression further, cancel out the common factor
\( (x-3) \).


\[ (3)/(2) = g \]

So, the values for the variables are:


\[ a = -1, \quad b = -9, \quad c = 9, \quad d = 3, \quad e = 3, \quad f = 2, \quad g = (3)/(2) \]

User Jaydeep Solanki
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.