122k views
3 votes
Enter the values for the highlighted variables to
complete the steps to find the sum:

Enter the values for the highlighted variables to complete the steps to find the sum-example-1
User BlackSpy
by
8.9k points

1 Answer

3 votes

The values for the variables are:


\[ a = -1, \quad b = -9, \quad c = 9, \quad d = 3, \quad e = 3, \quad f = 2, \quad g = (3)/(2) \]

Let's work through the steps to find the values of the variables
\( a, b, c, d, e, f, g \) in the given expression:


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) + (9)/(a(2x-6)) = (3x)/(2x-6) + (b)/(2x-6) = (3x-c)/(2x-6) = (d(x-e))/(f(x-3)) = g \]

Step 1:


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) + (9)/(a(2x-6)) \]

To make the denominators the same, set
\( a = -1 \).


\[ (3x)/(2x-6) + (9)/(6-2x) = (3x)/(2x-6) - (9)/(2x-6) \]

Step 2:


\[ (3x)/(2x-6) - (9)/(2x-6) = (3x)/(2x-6) + (b)/(2x-6) \]

To make the numerators the same, set
\( b = -9 \).


\[ (3x)/(2x-6) - (9)/(2x-6) = (3x-9)/(2x-6) \]

Step 3:


\[ (3x-9)/(2x-6) = (3x-c)/(2x-6) \]

To make the numerators the same, set
\( c = 9 \).


\[ (3x-9)/(2x-6) = (3x-9)/(2x-6) \]

Step 4:


\[ (3x-9)/(2x-6) = (d(x-e))/(f(x-3)) \]

To make the denominators and numerators the same, set
\( d = 3 \), \( e = 3 \), and \( f = 2 \).


\[ (3x-9)/(2x-6) = (3(x-3))/(2(x-3)) \]

Step 5:


\[ (3(x-3))/(2(x-3)) = g \]

To simplify the expression further, cancel out the common factor
\( (x-3) \).


\[ (3)/(2) = g \]

So, the values for the variables are:


\[ a = -1, \quad b = -9, \quad c = 9, \quad d = 3, \quad e = 3, \quad f = 2, \quad g = (3)/(2) \]

User Jaydeep Solanki
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories