The heat capacity of the calorimeter is calculated by using the heat energy equation q = mcΔT. In this exothermic reaction, heat released is absorbed by the calorimeter, causing a temperature rise. The given molar quantity of the limiting reagent is 0.346 mol, and the temperature change is ΔT = 3.99 K.
The question asks for the determination of the heat capacity of a calorimeter after performing an exothermic reaction that has led to an increase in temperature. The calorimeter's temperature increased from 293.15 K to 297.14 K. The heat absorbed by the calorimeter (q) can be calculated by using the formula q = mcΔT, where m is the mass of the limiting reagent in moles, c is the heat capacity of the calorimeter, and ΔT is the temperature change.
Since the reaction is exothermic, the heat released by the reaction is absorbed by the calorimeter, thus increasing its temperature. The molar quantity of the limiting reagent is given as 0.346 mol, and since a 1-to-1 stoichiometric ratio is specified, that means 1 mol of the substance reacts to give a certain known amount of heat energy (this specific heat energy is not provided in the question data, but it is generally needed to compute the heat capacity).
Using the observed temperature rise and assuming all of the heat is absorbed by the calorimeter and no heat is lost to the surroundings (because the calorimeter is insulated), we can calculate the heat capacity of the calorimeter. Since we do not have the actual value of the enthalpy change, the calculation is theoretically based on the provided details. Nevertheless, the relationship between heat capacity, molar quantity, and temperature change is essential in this scenario.