Answer:
(a) The negative charge on one of the charges is -8.79630245 × 10⁻⁷C
(b) The positive charge on one of the other charges is 8.79630245 × 10⁻⁷C
Step-by-step explanation:
The given parameters are;
The force of attraction between the two spheres = 0.0988 N
The distance between their centers = 44.5 cm = 0.445 m
Therefore, we have;
![F = (k \cdot q_1 \cdot q_2)/(d^2)](https://img.qammunity.org/2022/formulas/physics/college/iw5qcg6gahve1sxxhhzi64q73uvf04jo0l.png)
Therefore, we have;
![0.0988 \ N = -(8.99 * 10^9 N\cdot m^2 \cdot C^(-2)\cdot q_1 \cdot q_2)/((0.445 \ m)^2)](https://img.qammunity.org/2022/formulas/physics/college/70p7efdz7t07mbi5rkxai6z6pk5255uyco.png)
Therefore, we have;
q₁·q₂ = -0.0988 N × (0.445 m)²/(8.99 × 10⁹ N·m²·C⁻²) = -2.17629255 × 10⁻¹² C²
q₁·q₂ = -2.17629255 × 10⁻¹² C²...(1)
When the two charges are connected, we get;
![F_2 = (k \cdot \left ((q_1 + q_2)/(2) \right) ^2)/(d^2)](https://img.qammunity.org/2022/formulas/physics/college/2em2lo8olspxkdjf0dlfblg0p5zcde38dc.png)
Therefore, we have;
![q_1 + q_2 = \sqrt{(4 \cdot F_2 \cdot d^2)/(k) }](https://img.qammunity.org/2022/formulas/physics/college/scivegjrol1dyum8dgi3ebuwueybol84bu.png)
![q_1 + q_2 = \sqrt{(4 * 0.0276 \ N *(0.445 \ m)^2)/(8.99 * 10^9 N\cdot m^2 \cdot C^(-2)) } = 1.59446902743 * 10^(-6) \ C](https://img.qammunity.org/2022/formulas/physics/college/3jdrrl113ff25nr4e31jgbf4de63on36j9.png)
q₁ + q₂ = 1.59446902743 × 10⁻⁶ C...(2)
From, equation (2), we have;
q₁ = 1.59446902743 × 10⁻⁶ C - q₂
Plugging in the value of q₁ in equation (1) givens;
q₁·q₂ = -2.17629255 × 10⁻¹²
Therefore, we have;
(1.59446902743 × 10⁻⁶ - q₂) × q₂ = -2.17629255 × 10⁻¹²
Which gives;
-q₂² + 1.59446902743 × 10⁻⁶·q₂+2.17629255 × 10⁻¹² = 0
Solving, with a graphing calculator, we get;
q₂ = 2.4741×10⁻⁶ C, or -8.79630245 × 10⁻⁷C
q₁ = 8.79630245 × 10⁻⁷C or -2.4741×10⁻⁶ C
Therefore, we have;
(a) The negative charge on one of the charges = -8.79630245 × 10⁻⁷C
(b) The positive charge on one of the other charges = 8.79630245 × 10⁻⁷C